X
““Constructive Computer Architecture

Modules with Guarded
Interfaces

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

/4

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-1

Guarded interfaces

Make the life of the programmers easier: Include some
checks (readyness, fullness, ...) in the method definition
itself, so that the user does not have to test the
applicability of the method from outside

Guarded Interface:

N
\J

:n —

s Every method has a guard (rdy wire) Tg

= The value returned by a method is not full +—aqv— |
meaningful only if its guard is true —en 1S FIFo

= Every action method has an enable signal "°t €mPY 'Tdy_g

(en wire) and it can be invoked (en can B

not empty<Tdy—q;

be set to true) only if its guard is true

interface Fifo# (numeric type size, type t);
method Action eng(t x);

method Action degq; no’ricg, en and
method t first; rdy wires are
endinterface wnphcﬂ'

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-2

One-Element FIFO
Implementation with guards

p
4
module mkFifo (Fifo# (1, t));
Regi# (t) d <- mkRegU; ok
Reg# (Bool) v <- mkReg(False); _Jv+g
method Action eng(t x),if (!v); not full E& 3
v <= True; d <= x; _EWJEFWO
endmethod not empty rdy =
method Action deqg if (v)\; «—3
v <= False; notempl < rdy =
endmethod

Notice, no semicolon turns

method t first if (V); y.ifintoa guard

return d;
endmethod
endmodule

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-3

Rules with guards

Like a method, a rule can also have a guard

—
rule fook{BL;

begin x1 Q:\e%i\TZ <= e2 end
endrule No if before

the guard
for rules!

N

guard

A rule can execute only if it's guard is true,
i.e., if the guard is false the rule has no effect

True guards can be omitted

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-4

Streaming a function using a
FIFO with guarded interfaces

inQ outQ

N
\J

rule stream;
1f(1nQ.notEmpty && outQ.notFull)
begin outQ.eng(f(1nQ.first)); 1nQ.deqg; end
endrule

rule stream oottty r—cootorotEat+-;
outQ.eng(f(1nQ.first)),; 1inQ.deq;
endrule

The implicit guards of the method call are sufficient here

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-5

Switch using FIFOs with
guarded interfaces

p
\J
in — 7~ | redQ
~Cnitch)
— - greenQ
rule switch;
if (inQ.notEmpty)
if (inQ.first.color == Red) begin,
if (redQ.notFull) begin,
redQ.eng(inQ.first.value); 1inQ.deq; All the red
end, stuff can be
end, deleted
else begin,
if (greenQ.notFull) begin,
greenQ.enqg(inQ.first.value); 1nQ.deqg;
end,
end,

endrule -
September 15, 2017 http://csg.csail.mit.edu/6.175

LO5-6

Switch using FIFOs with
guarded interfaces

in \//'v
-Gy
R

N

redQ

greenQ

rule switch;
if (inQ.first.color == Red) begin
redQ.enqg (inQ.first.value); 1inQ.deq;
end else begin
greenQ.eng(inQ.first.value); 1inQ.deqg;
end
endrule

What is the implicit guard?
inQ.notEmpty ? (inQ.first.color == Red ? redQ.notFull
: greenQ.notFull)

: False
September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-7

Switch using FIFOs with
guarded interfaces

in \//'v
-Gy
R

N

redQ

greenQ

rule switch;
if (inQ.first.color == Red) begin
redQ.enqg (inQ.first.value); irp—deei—
end else begin
greenQ.eng(inQ.first.value); ab—cecH—
end
1inQ.deqg;
endrule

Does this code still work?

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-8

GCD with and without
guards

p
4
e = =
{ o » =
en —— n 95 «—— eNn —_— = D —
GCD |© en — 3| GCD Izl en
> >
— % -r% —
a 0
Interface without guards Interface with guards

interface GCD;
method Action start (Bit#(32) a, Bit#(32) Db);
method ActionValue# (Bit#(32)) getResult;
—methed RBool by
—me-thod—Beoot+—+reacy~
endinterface

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-9

Using GCD module with
guarded interfaces

J@i-Fot-

inQ outQ

N

GCD

start

getResult

rule 1invokeGCD;

gcd.start (1nQ.first); 1nQ.deq;
endrule;

rule getResult;

let x <= gcd.getResult; outQ.enqg(x);
endrule;

A rule can be executed only if guards of all of its
actions are true

September 15, 2017 http://csg.csail.mit.edu/6.175

LO5-10

GCD with guarded interfaces

_implementation

Tmodule mkGCD (GCD) ; interface GCD;

Reg# (Bit# (32)) x <- mkReg (0); meth‘?;i;f;;’; Stgi#wz) by
| i a,Bi ;

Reg# (Bit# (32)) y <- mkReg(0); method ActionValue (Bit# (32))

Reg# (Bool) busy <- mkReg (False);

getResult;
endinterface
rule gcd;
if (x >= y) begin x <= x - y; end //subtract
else if (x != 0) begin x <= y; y <= x; end //swap

endrule

method Action start (Bit#(32) a, Bit#(32) b) if (!busy);
X <= a; y <= b; busy <= True;

endmethod

method ActionValue (Bit# (32)) getResult 1if (x==0);
busy <= False; return y;

endmethod

endmodule

Assume b /=0

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-11

Guards vs Ifs

p
4
method Action eng(t x) 1i1f (!v); guard is !v; enqg can
v <= True; d <= x; be applied only if v
endmethod is false
Versus
method Action eng(t x); guard is True, i.e.,
if (!v) begin v <= True; d <= x; end |the method is
endmethod always applicable.
if v is true
then x would
get lost;
bad

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-12

Pipelining combinational
circuits

/4

September 15, 2017 http://csg.csail.mit.edu/6.175 L05-13

Pipelining Combinational
Functions
7 T 1 3 different
—— @— *@——’ datasets in
| | the pipeline

Lot of area and long combinational delay

Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse

Pipelining: a method to increase the circuit
throughput by evaluating multiple inputs

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-14

Inelastic vs Elastic pipeline

RS S RO

inQ sRégl sREgZ outQ

N

X

Inelastic: all pipeline stages move synchronously

e)-(e2)-
inQ fifol fifo2 outQ

Elastic: A pipeline stage can process data if its
input FIFO is not empty and output FIFO is not Full

Most complex processor pipelines are a combination of the two styles
September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-15

Elastic pipeline

Use FIFOs instead of pipeline registers

N

ey @q 4@#

no need for
”@_’ valid bits

inQ fifol fifo2

rule stagel;
fifol.eng(fl(inQ.first));
inQ.deqg() ; endrule

rule stage?Z;
fifoZ2.eng(f2(fi1fol.first));
fifol.deqg; endrule

rule stage3;
outQ.eng(f3(fifo2.fi1rst));
fifo2.deqg; endrule

September 15, 2017

outQ

#® When can stagel rule fire?

- inQ has an element
- fifol has space

(Can tokens be left in the

ipeline?
PIP No

Can these rules execute

concurrently?

http://csg.csail.mit.edu/6.175 LO5-16

Elastic pipeline

—Jode]e-

N

X
inQ fifol fifo2 outQ

rule stagel; # If these rules cannot
fifol.eng(fl(inQ.first)); execute concurrently, it is
inQ.deq() ; endrule hardly a pipelined system

rule stageZ; # When can rules execute
fifoZ2.eng(f2(fi1fol.first)); concurrently?
fifol.deq; endrule # What hardware is

rule stage3; | | synthesized to execute
outQ.eng(f3(fi1fo2.fi1rst)); rules concurrently?
fifo2.deqg; endrule

September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-17

Multi-rule Systems

.
Repeatedly: Non-deterministic
Select a rule to execute -« choice; User

annotations can
Compute the state updates be used in rule
Make the state updates selection

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

However, for performance we execute multiple

rules concurrently whenever possible

stay tuned ...
September 15, 2017 http://csg.csail.mit.edu/6.175 LO5-18

